
BETTER SOFTWARE FASTER
DAVE FARLEY’S HOW TO GUIDE

BEGINNERS GUIDE TO TDD (TEST DRIVEN DEVELOPMENT)

TEST DRIVEN DEVELOPMENT

RED > GREEN > REFACTOR

RED

TDD is one of only a few techniques that help us to design better software,
faster.

In order to create software that is easily “testable” we need software that
we can interact with and that allows us to capture the results of those
interactions so that we can match them in the assertions in our tests.

“Testable” code is more modular, more loosely-coupled, has better
sepaseparation-of-concerns, is better abstracted and is more highly-
cohesive. These are also the hallmarks of well-designed software.So
TDD helps to steer us towards better design.

This is largely as a result of TDD forcing us to apply Dependency Inversion
so that we can inject test-time components with which we can capture,
and fake, those interactions that we want to test.

TDD is less about testing and more about good design.

Start with a failing test.
We always write the test BEFORE we write the code. See the test
fail before moving on to the next step. Create a mini executable
specification. This is expressed as a specification of the
behavioural intent of the code, i.e what the code should do. So
we start each test with the word SHOULD.

Continuous Delivery Ltd. 2020.

In Continuous Delivery Acceptance Tests are tests that are “Business Facing” and “Support
Programming”. They are part of a systemic, strategic, approach to testing and a cornerstone of any
effective CD testing strategy.
The most effective way to work is to create an Acceptance Test, before you write any code. These tests
act as an “Executable Specification” for your work. The Acceptance Test acts as a guide to organise your
work until the specification is met.
Developers use more technical, fine-grained TDD to create code that meets the specification in the
Acceptance Test.
The combination of Acceptance Tests and TDD in this approach results in reductions in defects of often
two orders-of-magnitude.

Properties of Effective Acceptance Tests
Are written from the perspective of an external user of the system.
Evaluate the system in life-like scenarios.
Are evaluated in production-like test environments.
Interact with the System Under Test (SUT) through public interfaces (no back-door access for tests).
Focus only on What the system does, not How it does it.

Approach

Tips
Imagine the least technical person that you can think of, who understands the problem-domain,
reading your Acceptance Tests. The tests should make sense to that person.

Imagine throwing your SUT away and replacing it with something completely different, that achieves
the same goals - your Acceptance Tests should still make sense.
e.g. Imagine testing buying a book on Amazon. Could your tests work just as well for a robot doing book-shopping in a physical book store?

This means avoid tests that say things like “fill in this field” or “click this button” instead say things
like “placeAnOrder” or “payByCreditCard”. Adopt the language of the problem domain exclusively!

Make the scenarios that the tests capture atomic. Don’t share test-data between test cases. Make
each test-case start from the assumption of a running, functioning system, but one that contains no-
data.

BETTER SOFTWARE FASTER
DAVE FARLEY’S HOW TO GUIDE

BEGINNERS GUIDE TO TDD (TEST DRIVEN DEVELOPMENT)

TEST DRIVEN DEVELOPMENT

RED > GREEN > REFACTOR

RED

TDD is one of only a few techniques that help us to design better software,
faster.

In order to create software that is easily “testable” we need software that
we can interact with and that allows us to capture the results of those
interactions so that we can match them in the assertions in our tests.

“Testable” code is more modular, more loosely-coupled, has better
sepaseparation-of-concerns, is better abstracted and is more highly-
cohesive. These are also the hallmarks of well-designed software.So
TDD helps to steer us towards better design.

This is largely as a result of TDD forcing us to apply Dependency Inversion
so that we can inject test-time components with which we can capture,
and fake, those interactions that we want to test.

TDD is less about testing and more about good design.

Start with a failing test.
We always write the test BEFORE we write the code. See the test
fail before moving on to the next step. Create a mini executable
specification. This is expressed as a specification of the
behavioural intent of the code, i.e what the code should do. So
we start each test with the word SHOULD.

Continuous Delivery Ltd. 2020.

Acceptance Test Driven Development

BETTER SOFTWARE FASTER
DAVE FARLEY’S HOW TO GUIDE

BEGINNERS GUIDE TO TDD (TEST DRIVEN DEVELOPMENT)

TEST DRIVEN DEVELOPMENT

RED > GREEN > REFACTOR

RED

TDD is one of only a few techniques that help us to design better software,
faster.

In order to create software that is easily “testable” we need software that
we can interact with and that allows us to capture the results of those
interactions so that we can match them in the assertions in our tests.

“Testable” code is more modular, more loosely-coupled, has better
sepaseparation-of-concerns, is better abstracted and is more highly-
cohesive. These are also the hallmarks of well-designed software.So
TDD helps to steer us towards better design.

This is largely as a result of TDD forcing us to apply Dependency Inversion
so that we can inject test-time components with which we can capture,
and fake, those interactions that we want to test.

TDD is less about testing and more about good design.

Start with a failing test.
We always write the test BEFORE we write the code. See the test
fail before moving on to the next step. Create a mini executable
specification. This is expressed as a specification of the
behavioural intent of the code, i.e what the code should do. So
we start each test with the word SHOULD.

Continuous Delivery Ltd. 2020.

Test Cases are written in the language of the problem domain, from the perspective of an external user.

Four Layer Separation of Concerns

Test Cases

Domain Specific Language

Test Case
(Executable

Specification)

Test Case
(Executable

Specification)

Test Case
(Executable

Specification)

Test Case
(Executable

Specification)

Protocol
Driver

(e.g. UI)

System Under Test

Protocol
Driver

(e.g. API)

External
System Stub

External
System Stub

BETTER SOFTWARE FASTER
DAVE FARLEY’S HOW TO GUIDE

BEGINNERS GUIDE TO TDD (TEST DRIVEN DEVELOPMENT)

TEST DRIVEN DEVELOPMENT

RED > GREEN > REFACTOR

RED

TDD is one of only a few techniques that help us to design better software,
faster.

In order to create software that is easily “testable” we need software that
we can interact with and that allows us to capture the results of those
interactions so that we can match them in the assertions in our tests.

“Testable” code is more modular, more loosely-coupled, has better
sepaseparation-of-concerns, is better abstracted and is more highly-
cohesive. These are also the hallmarks of well-designed software.So
TDD helps to steer us towards better design.

This is largely as a result of TDD forcing us to apply Dependency Inversion
so that we can inject test-time components with which we can capture,
and fake, those interactions that we want to test.

TDD is less about testing and more about good design.

Start with a failing test.
We always write the test BEFORE we write the code. See the test
fail before moving on to the next step. Create a mini executable
specification. This is expressed as a specification of the
behavioural intent of the code, i.e what the code should do. So
we start each test with the word SHOULD.

Continuous Delivery Ltd. 2020.

The DSL is shared between test-cases. It is designed to make it easy to write Test Cases. It should allow
precision, where precision is need to express a test and skim over detail where it is not. Best way to
achieve that is with ‘optional parameters’ for nearly everything.

Encode common start-up tasks for test, e.g. “registering users” or “populating accounts”.

Keep the DSL focussed on Domain level concepts, and clean from ideas of How the system works

Domain Specific Language (DSL)

Protocol Drivers (PDs) are translators, or adaptors. Translating from the DSL to the “language of the
system”.
A good pattern is to mirror the interface to the DSL dsl.checkOut calls into driver.checkOut
but with more specific parameters. DSL parses parameters and fills-in detail, Protocol Drivers encode
real interactions with the SUT.
Create new PD for, at least, each different channel of communication supported by the SUT.
Isolate all test infrastructure knowledge of the system here.

Protocol Drivers

BETTER SOFTWARE FASTER
DAVE FARLEY’S HOW TO GUIDE

BEGINNERS GUIDE TO TDD (TEST DRIVEN DEVELOPMENT)

TEST DRIVEN DEVELOPMENT

RED > GREEN > REFACTOR

RED

TDD is one of only a few techniques that help us to design better software,
faster.

In order to create software that is easily “testable” we need software that
we can interact with and that allows us to capture the results of those
interactions so that we can match them in the assertions in our tests.

“Testable” code is more modular, more loosely-coupled, has better
sepaseparation-of-concerns, is better abstracted and is more highly-
cohesive. These are also the hallmarks of well-designed software.So
TDD helps to steer us towards better design.

This is largely as a result of TDD forcing us to apply Dependency Inversion
so that we can inject test-time components with which we can capture,
and fake, those interactions that we want to test.

TDD is less about testing and more about good design.

Start with a failing test.
We always write the test BEFORE we write the code. See the test
fail before moving on to the next step. Create a mini executable
specification. This is expressed as a specification of the
behavioural intent of the code, i.e what the code should do. So
we start each test with the word SHOULD.

Continuous Delivery Ltd. 2020.

Deploy the system using the same tools & techniques as you deploy in production. This allows
Acceptance tests to evaluate any change to production, including config, os version, db version etc.

Use Infrastructure-as-code techniques to manage test (and production) environments and you now
have Full Control.
“Production-like” means that, from the perspective of the SUT, it can’t tell the difference in how it is
deployed or configured.

Consider optimising in usual places to make it easy to test.
e.g Make your system start-up FAST!

System Under Test (SUT)

Grow your DSL pragmatically. Create two or three simple test-cases that exercise the most common/
valuable behaviour of your system. Even at this level, you should expect some re-use in the DSL.

Create the infrastructure that allows these tests to execute, and to pass.

Now adopt the discipline that you, and your team, will create a new Acceptance Test for every
Acceptance Criteria for every User Story. Drive all new development from these tests.

Invent the language needed to express a test-case at the time of writing the test. Don’t worry about
implementation!

Anyone can write a test-case, QA, BA, PO, Dev, but ensure that Devs & Dev teams own the tests. If a test
breaks a Dev should notice first. Devs own responsibility for writing the plumbing (DSL and PDs) that
make the tests work.

When taken seriously this approach is extremely effective. It takes discipline and time to adopt but can
result in enormous savings in time and increases in quality.

Growing the DSL

